Hình 8: Nguyên lí dẫn thuốc dùng hạt nanô từ tính. Một thanh nam châm bên ngoài rất mạnh tạo ra một gradient từ trường kéo các hạt nanô từ tính gắn với thuốc đến vị trí mong muốn. Ở đó quả trình nhả thuốc diễn ra làm cho hiệu quả sử dụng thuốc được tăng lên nhiều lần.
Hình 9: Nguyên lí chức năng hóa bề mặt của hạt nanô từ tính có cấu trúc vỏ/lõi. Lõi của hạt là ô xít sắt, vỏ là lớp silica, các nhóm chức bên ngoài có thể là carboxyl, amino, streptavidin,…
Các hạt nanô từ tính thường dùng là ô-xít sắt (magnetite Fe3O4, maghemite a-Fe2O3) bao phủ xung quanh bởi một hợp chất cao phân tử có tính tương hợp sinh học như PVA, detran hoặc silica. Chất bao phủ có tác dụng chức năng hóa bề mặt để có thể liên kết với các phân tử khác như nhóm chức carboxyl, biotin, avidin, carbodiimide,… (Hình 9)[22-24] Nghiên cứu dẫn truyền thuốc đã được thử nghiệm rất thành công trên động vật, đặc biệt nhất là dùng để điều trị u não. Việc dẫn truyền thuốc đến các u não rất khó khăn vì thuốc cần phải vượt qua hàng rào băng cách giữa não và máu, nhờ có trợ giúp của hạt nanô từ có kích thước 10-20 nm, việc dẫn truyền thuốc có hiệu quả hơn rất nhiều. Việc áp dụng phương pháp này đối với người tuy đã có một số thành công, nhưng còn rất khiêm tốn.
Người ta đã thành công trong việc hướng thuốc doxorubicin đến tế bào u bướu ở đuôi chuột.[25] Kết quả là kích thước của bướu giảm đi hoàn toàn nếu sử dụng hạt nanô từ tính dẫn thuốc. Trong khi các thí nghiệm dựa trên thuốc không được dẫn bằng hạt nanô từ tính có nồng độ cao hơn 10 lần vẫn không triệt tiêu được bướu. Phương pháp này được mở rộng sang một số loài động vật khác và thu được kết quả tương tự.[26, 27] Một cải biến của phương pháp này là cấy một nam châm nhỏ vào một bướu xương và tiêm hạt nanô mang thuốc bằng liposome so sánh với tiêm thuốc thông thường vào tĩnh mạch. Kết quả cho thấy lượng thuốc đến bướu xương khi dùng hạt nanô từ tính lớn gấp 4 lần lượng thuốc đến bướu xương khi không dùng hạt nanô.[28] Hơn nữa, phương pháp này còn giảm thiểu các hiệu ứng phụ do thuốc gây ra.[29] Việc ứng dụng trên người còn hạn chế. Một số nhóm đã nghiên cứu thử nghiệm pha 1 với chất lỏng từ tính cho 14 bệnh nhân. Nghiên cứu cho thấy người ta có thể dẫn các hạt nanô từ tính đến các u bướu trong cơ thể người mà không gây độc cho cơ thể.[30, 31] Các nghiên cứu sau đó trên ung thư gan cho thấy kết quả ban đầu rất khả quan.
Hạt nanô từ tính còn được dùng cùng với nuclide phóng xạ (radionuclide). Nuclide phóng xạ sử dụng các đồng vị phóng xạ của các nguyên tố nhằm tiêu diệt tế bào ung thư. Hạt nanô từ tính gắn với nucide phóng xạ sẽ giúp cho các nuclide này đến gần các mục tiêu và lưu trú ở đó trong một thời gian dài nhằm phát huy tác dụng của tia phóng xạ. Ưu điểm của phương pháp nuclide phóng xạ từ tính so với phương pháp dẫn thuốc bằng từ trường là nuclide không cần phải tiếp xúc với tế bào mà chỉ cần đi đến gần tế bào mà thôi. Thử nghiệm trên khối u chủa chuột người ta thấy rằng liều chiếu xạ khi dùng hạt nanô từ tính cao hơn một chục lần so với sử dụng nuclide Yttrium-90 và Rhenium-188 không được dẫn bởi từ trường ngoài.[32, 33]
Hạt nanô từ tính còn được ứng dụng trong trị liệu gen (gene therapy). Một gen trị liệu được gắn với hạt nanô từ tính. Hạt nanô từ tính được giữ ở một vị trí nào đó dưới tác dụng của từ trường ngoài. Khi siêu vi tiếp xúc với mô thì làm gia tăng khả năng truyền gen và thể hiện gen.[34]
3.3. Đốt nhiệt từ
Phương pháp đốt các tế bào ung thư bằng từ trường ngoài mà không ảnh hưởng đến các tế bào bình thường là một trong những ứng dụng quan trọng khác của hạt nanô từ tính. Một trong những nghiên cứu đầu tiên về đốt nhiệt từ xuất hiện từ năm 1957.[35] Nguyên tắc hoạt động là các hạt nanô từ tính có kích thước từ 20-100 nm được phân tán trong các mô mong muốn sau đó tác dụng một từ trường xoay chiều với tần số 1,2 MHz bên ngoài đủ lớn về cường độ và tần số để làm cho các hạt nanô hưởng ứng mà tạo ra nhiệt nung nóng những vùng xung quanh. Nhiệt độ khoảng 42 °C trong khoảng 30 phút có thể đủ để giết chết các tế bào ung thư trong khi các tế bào thường vẫn an toàn (Hình 10).
Hình 10: Nghiên cứu thử nghiệm đốt nhiệt từ trên thỏ cho thấy nhiệt độ bên ngoài và bên trong u bướu (hai đường trên cùng) cao hơn nhiều so với nhiệt độ của những vùng xung quanh (những đường dưới).
Nghiên cứu về kĩ thuật tăng thân nhiệt cục bộ được phát triển từ rất lâu và có rất nhiều công trình đề cập đến kĩ thuật này nhưng chưa có công bố nào thành công trên người. Khó khăn chủ yếu đó là việc dẫn truyền lượng hạt nanô phù hợp để tạo ra đủ nhiệt lượng khi có sự có mặt của từ trường ngoài mạnh trong phạm vi điều trị cho phép. Các yếu tố ảnh hưởng đến quá trình nung nóng cục bộ là lưu lượng máu và phân bố của các mô. Thực nghiệm và tính toán cho biết tỉ số phát nhiệt vào khoảng 100 mW/cm3 là đủ trong hầu hết các trường hợp thực nghiệm.[36] Tần số và biên độ của từ trường thường dùng dao động trong khoảng f = 0,05-1,2 MHz, H <>3. Vật liệu dùng để làm hạt nanô thường là magnetite và maghemite và có thể có tính sắt từ hoặc siêu thuận từ. Phần lớn các thí nghiệm được tiến hành với hạt siêu thuận từ. Vì vậy, ở đây chúng tôi chỉ giải thích cơ chế vật lý cho hạt siêu thuận từ. Với hạt siêu thuận từ, khi áp dụng một từ trường xoay chiều thì hạt sẽ hưởng ứng dưới tác dụng của từ trường đó. Sự hưởng ứng được thể hiện bằng chuyển động quay vật lý và quay mô men từ của hạt. Hai quá trình quay này được đặc trưng bới hai thông số là thời gian hồi phục Brown (tB) và thời gian hồi phục Néel (tN). Với một kích thước hạt cho trước tổn hao Brown thắng thế ở tần số thấp, tổn hao Néel thắng thế ở tần số cao.
Tính toàn lượng nhiệt thoát ra của hạt nanô siêu thuận từ dựa trên mô hình Debye [38] lần đầu tiên được tính cho chất lỏng phân cực.[39] Phương trình tính công suất thoát nhiệt của hạt nanô siêu thuận từ không tương tác dưới tác dụng của từ trường xoay chiều được cho bởi công thức sau:
P = m0pfc”H2
(Phương trình 3)
trong đó m0 là từ thẩm của môi trường, f là tần số từ trường xoay chiều, c” là thành phần ngược pha của độ cảm từ phức (độ hấp thụ), H là cường độ từ trường. Nếu chuyển động của hạt nanô từ tính ngược pha so với từ trường thì một phần năng lượng từ chuyển thành nội năng của hệ. Một chất lỏng từ được đặc trưng bởi tốc độ hấp thụ riêng (specific absorption rate - SAR) có đơn vị là W/g. Tích số của SAR với mật độ hạt nanô từ tính cho công suất thoát nhiệt của hạt nanô.[40] Ngoài khả năng thoát nhiệt của hạt siêu thuận từ, hạt sắt từ cũng là một ứng cử viên trong đốt nhiệt từ. Công suất đốt nhiệt của hạt sắt từ phụ thuộc vào diện tích của đường cong từ trễ.
P = m0fòHdM
(Phương trình 4)
Công suất thoát nhiệt sắt từ sẽ lớn ở từ trường lớn đến 100 kA/m. Tuy nhiên trong các ứng dụng thực tế, từ trường ngoài đặt vào chỉ khoảng 15 kA/m nên công suất phát nhiệt sắt từ tường nhỏ hơn công suất phát nhiệt siêu thuận từ. Với chất lỏng từ tốt giá trị SAR có thể đạt giá trị 45 W/g tại từ trường cỡ 5,6 kA/m, tần số 300 kHz.[41]
3.4. Tăng độ tương phản cho ảnh cộng hưởng từ
Mặc dù mô men từ của một prôtôn rất nhỏ (bằng 1,5´10-3 mô men từ của điện tử) nhưng trong cơ thể động vật có một lượng rất lớn prôtôn (hạt nhân nguyên tử hiđrô của phân tử nước, vào khoảng 6,6´1019 proton/mm3 nước) nên có thể tạo ra một hiệu ứng có thể đo được. Nếu tác dụng một từ trường tĩnh cố định có cường độ B0 = 1 T thì sẽ có ba phần triệu proton (tương đương với 2´1014 proton) sẽ định hướng theo phương của từ trường ngoài B0. Tín hiệu này có thể đo được bằng hấp thụ cộng hưởng như sau: tác dụng một từ trường xoay chiều vuông góc với từ trường cố định B0 và có tần số bằng tần số tuế sai Larmor w0 = gB0 (g là hệ số từ cơ của proton) của prôtôn thì sự hấp thụ cộng hưởng sẽ xảy ra. Với hạt nhân nguyên tử hiđrô 1H, tỉ số từ cơ 2,67´108 rad s-1 T-1). Tần số tuế sai Larmor sẽ tương ứng với tần số sóng vô tuyến và có giá trị là 42,57 MHz. Khi chỉ có mặt của từ trường cố định, prôtôn sẽ tuế sai xung quanh hướng của từ trường. Khi từ trường xoay chiều được phát ra, mặc dù cường độ của từ trường này yếu hơn nhiều so với từ trường cố định nhưng vì tần số của nó đúng bằng tần số tuế sai nên mô mentừ của prôtôn sẽ hướng theo phương của từ trường xoay chiều, tức là vuông góc với từ trường cố định. Thực tế người ta tác dụng từ trường xoay chiều theo từng xung, độ dài của xung đủ lớn để tạo hưởng ứng liên kết của mô men từ mà máy đo có thể đo được. Khi từ trường xoay chiều ngừng tác động, mô men từ sẽ trở lại phương của từ trường cố định (xem hình 11). Một cuộn dây thu tín hiệu sẽ thu lại thời gian hồi phục cả mô men từ của proton trở lại phương của từ trường B0 sau khi được khuyếch đại 50 – 100 lần. Theo hình 11, B0 song song với trục z, tín hiệu hồi phục cho bởi:
mz = m[1-exp(-t/T1)]
mx,y = m sin(w0t + f)exp(-t/T2)
(Phương trình 5)
Trong đó thời gian hồi phục dọc T1 (spin-mạng) và thời gian hồi phục ngang T2 (spin-spin), t là thời gian và f là hằng số pha. T1 đặc trưng cho sự mất mát nhiệt lượng ra môi trường xung quanh và là phép đo thể hiện liên kết từ giữa spin và môi trường. Hồi phục theo phương x, y tương đối nhanh và được điều khiển bởi sự lệch liên kết pha của proton tuế sai do tương tác từ giữa các proton với nhau và với các mô men thăng giáng ở trong các mô. T2 đặc trưng cho sự lệch pha của prôtôn với từ trường xoay chiều. Tuy nhiên sự lệch pha có thể do sự bất đồng nhất của từ trường nên giá trị T2 được thay thế bằng giá trị T2*:
1/T*2 = 1/T2 + gDB0/2
(Phương trình 6)
DB0 là sự biến thiên của từ trường cố định có thể do sự biến dạng địa phương của từ trường hoặc do sự thay đổi của độ cảm từ.
Hình 11: Cơ chế của cộng hưởng từ hạt nhân. (a) mô men từ của proton tuế sai xung quanh một từ trường ngoài 1 T, (b) một từ trường xoay chiều tần số bằng tần số tuế sai của mô men từ tác dụng làm cho mô men từ hướng theo phương của từ trường xoay chiều, (c) sau khi tắt từ trường xoay chiều mô men từ hồi phục theo phương từ trường 1 T. Thời gian hồi phục là tín hiệu của máy đo.
Hình 12: Thời gian hồi phục khi có mặt của hạt nanô từ tính và khi không có hạt nanô từ tính
Các giá trị T1 và T2* có thể giảm đi khi có mặt của hạt nanô từ tính. Các hạt nanô siêu thuận từ tạo thành từ ô xít sắt hoặc hợp chất chứa Gd thường được sử dụng như tác nhân làm tăng độ tương phản trong cộng hưởng từ (hình 12). Sự có mặt của chúng làm nhiễu loạn từ trường địa phương nên làm T2 thay đổi giá trị rất nhiều. Giá trị của T1 cũng thay đổi nhưng ở mức độ yếu hơn. Dựa trên đặc tính của từng mô trong cơ thể, tùy loại mô mà độ hấp thụ hạt nanô mạnh hay yếu. Từ trường xoay chiều tác dụng thường được khởi động theo từ xung. Các thông số quan trọng là chu kì của xung (thời gian giữa hai xung liên tiếp) và thời gian trễ (thời gian khi bật xung đến khi đo tín hiệu). Chu kì ngắn sẽ tăng hiệu ứng T1, chu kì dàilàm cho các proton đạt được trạng thái hồi phục dọc hoàn toàn nên làm giảm T1. Thời gian trễ ngắn làm giảm T2, thời gian trễ dài làm tăng T2. Như vậy ta có thể thu tín hiệu dựa trên T1 (tối ưu hóa chu kì và giảm thời gian trễ) hoặc T2 (chu kì và thời gian trễ dài).
Ví dụ, hạt nanô ô xít sắt được bao phủ dextran có tính tương hợp sinh học và có thể được đào thải qua gan sau khi sử dụng. Các hạt nanô này được phát hiện bởi màng lưới nội mô của cơ thể. Độ tương phản trong ảnh cộng hưởng từ hạt nhân dựa trên hiện tượng các mô khác nhau sẽ hấp thu khác nhau. Ví dụ các hạt nanô có đường kính 30 nm có thể nhanh chóng đi vào gan và tì trong khi những cơ quan khác thì chậm hơn. Như vậy, mật độ hạt nanô ở các cơ quan là khác nhau, dẫn đến sự nhiễu loạn từ trường địa phương cũng khác nhau làm tăng độ tương phản trong ảnh cộng hưởng từ do thời gian hồi phục bị thay đổi khi đi từ mô này đến mô khác. Những hạt có kích thước nhỏ sẽ có thời gian tồn tại trong cơ thể lâu hơn vì màng lưới nội mô nhận biết chúng khó hơn. Các hạt nanô như là một chất tương phản MRI có thể đi đến tủy xương,[42] mạch máu,[43] hệ thần kinh.[44] Chú ý rằng màng lưới nội mô của các tế bào ung thư hoạt động không hiệu quả như các tế bào khỏe mạnh thông thường. Do đó, thời gian hồi phục của các proton trong các tế bào ung không bị ảnh hưởng nhiều. Dựa trên điều này người ta xác định được các hạch bạch huyết,[45] ung thư gan[46] và ung thư não.[47]
Hình 13: Ảnh MRI của não chuột để phát hiện tế bào gốc cấy vào trong não. Hình trên có sử dụng các tế bào gốc đánh dấu bởi các hạt nanô từ tính, hình dưới không được đánh dấu.
Hạt nanô từ tính được chức năng hóa để liên kết với một số mô nhất định sẽ có tác dụng đánh dấu hiệu quả hơn. Hình 13 cho thấy ảnh MRI của não chuột để phát hiện tế bào gốc cấy vào trong não. Hình trên có sử dụng các tế bào gốc đánh dấu bởi các hạt nanô từ tính, hình dưới không được đánh dấu. Độ tương phản của các tế bào được đánh dấu khác biệt hẳn so vởi độ tương phản của các tế bào không được đánh dấu.[48] Ngoài ra đánh dấu từ tính còn được áp dụng để quan sát thể hiện gen trong công nghệ gen[49] hoặc để nghiên cứu quá trình chết của tế bào.[50]
4. Một số nghiên cứu ở Việt Nam
Ở Việt Nam, việc chế tạo các hạt nanô từ đã được thực hiện một vài năm trước đây bằng phương pháp hóa.[51] Có điều đặc biệt là các nghiên cứu chế tạo hạt nanô từ đều tập trung định hướng vào các ứng dụng trong y-sinh học.[52] Ngoài các ứng dụng để tách tế bào,[53] dẫn thuốc, đốt nhiệt từ đã nêu ở trên, chúng tôi còn quan tâm đến việc chế tạo các hạt nanô từ để tách ADN.
5. Phụ lục một số ứng dụng của hạt nanô từ tính
Bảng 1: Hạt nanô từ tính bao bọc bởi các polymer tự hủy sinh học
Chất mang | Ứng dụng sinh học |
Erythrocytes | Dẫn thuốc Tách tế bào |
Liposomes | Dẫn thuốc |
Phospholipids | Cố định enzym |
Albumin | Dẫn thuốc Tách tế bào |
Starch | Dẫn thuốc MRI Xạ trị |
Poly(lactic acid) | Xạ trị |
Dextran | Tách tế bào Cố định enzym MRI Đốt nhiệt từ Dẫn thuốc |
Chitosan | Dẫn thuốc |
Polyalkylcyanoacrylate | Dẫn thuốc |
Polyethylene imine | Dẫn thuốc |
Bảng 2: Hạt nanô từ tính bao bọc bởi các polymer thường.[i]
Chất mang | Ứng dụng |
Ethyl-cellulose | Thâm nhập động mạch |
Polymers tổng hợp: Polystyrene Polymethylmetacrylate | Tách tế bào, siêu vi, kí sinh trùng |
Bảng 3: Một số loại polymer thường dùng để chức năng hóa bề mặt hạt nanô từ tính
Loại polymer | Ứng dụng |
Polyethylene glycol | Tăng thời gian lưu thông trong hệ tuần hoàn |
Dextran | Tăng thời gian lưu thông trong hệ tuần hoàn |
Polyvinylpyrrolidone | Tăng thời gian lưu thông trong hệ tuần hoàn |
Fatty acids | Ổn định hệ huyền phù, cung cấp nhóm carboxyl |
Polyvinyl alcohol (PVA) | Giúp hạt đồng nhất |
Polyacrylic acid | Tương hợp sinh học |
Polypeptides | Sinh học tế bào, dẫn thuốc |
Phosphorylcholine | Ổn định hệ huyền phù |
Poly (D, L- lactide) | Tương hợp sinh học |
Poly(N-isopropylacryl amide) | Dẫn thuốc, tách tế bào |
Chitosan | Ứng dụng nhiều trong nông nghiệp, dược phẩm |
Gelatin | Tương hợp sinh học |
[1] Lowenstam HA, Bull Geo. Soc. Am. (1962) 73, 435
[2] Kirschvink JL., Hagadon JW, in: Biomineralization of nano and micro-structures, Bauerlein E (Ed.) Wiley-VCH, Weinheim, p. 139.
[3] Blakemore R, Science 190 (1975) 377.
[4] Matsunaga T, Sakaguchi T, J. Biosci. Bioeng. 90 (2000) 1.
[5] I. Šafařík, M. Šafaříková, Monatshefte für Chemie 133 (2002) 737.
[6] Weiss BP, et al., Science 290 (2000) 791.
[7] Matsunaga T, Tsujimura N, Kamiya S, Biotechno. Tech. 9 (1995) 355
[8] Leslie-Pelecky, D.L., V. Labhasetwar, and J. Kraus, R.H., Nanobiomagnetics, in Advanced Magnetic Nanostructures, D.J. Sellmyer and R.S. Skomski, Editors. 2005, Kluwer: New York.
[9] Pankhurst, Q.A., J. Connolly, S.K. Jones, and J. Dobson, J. Phys. D: Appl. Phys., 36 (2003) R167.
[10] Owen C S 1983 Magnetic cell sorting Cell Separation: Methods and Selected Applications (New York: Academic)
[11] Rheinlander T, Kotitz R, Weitschies W and Semmler W 2000 Magnetic fractionation of magnetic fluids J. Magn. Magn. Mater. 219 219–28
[12] Moore L, Rodeiguez A, Williams P, McCloskey B, Nakamura M, Chalmers J and Zborowski M 2001 Progenitor cell isolation with a high-capacity quadrapole magnetic flow sorter J. Magn. Magn. Mater. 225 277–8.
[13] Todd P, Cooper R, Doyle J, Dunn S, Vellinger J and Deuser M 2001 Multistage magnetic particle separator J. Magn. Magn. Mater. 225 294–300
[14] Liberti P A, Rao C G and TerstappenLWMM2001 Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood J. Magn. Magn. Mater. 225 301–7
[15] Paul F, Melville D, Roath S and Warhurst D 1981 A bench top magnetic separator for malarial parasite concentration IEEE Trans. Magn. MAG-17 2822–4
[16] Seesod N, Nopparat P, Hedrum A, Holder A, Thaithong S, Uhlen M and Lundeberg J 1997 An integrated system using immunomagnetic separation, polymerase chain reaction, and colorimetric detection for diagnosis of Plasmodium Falciparum Am. J. Tropical Med. Hygiene 56 322–8
[17] Hofmann W-K, de Vos S, Komor M, Hoelzer D, Wachsman W and Koeffler H P 2002 Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow Blood 100 3553–60
[18] Senyei A, Widder K and Czerlinski C 1978 Magnetic guidance of drug carrying microspheres J. Appl. Phys. 49 3578–83
[19] Mosbach K and Schr¨oder U 1979 Preparation and application of magnetic polymers for targeting of drugs FEBS Lett. 102 112–6
[20] Alexiou C, Arnold W, Klein R J, Parak F G, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S and Lubbe A S 2000 Locoregional cancer treatment with magnetic drug targeting Cancer Res. 60 6641–8
[21] Voltairas P A, Fotiadis D I and Michalis L K 2002 Hydrodynamics of magnetic drug targeting J. Biomech. 35 813–21
[22] Mehta R V, Upadhyay R V, Charles S W and Ramchand C Nc1997 Direct binding of protein to magnetic particlescBiotechnol. Techn. 11 493–6
[23] Koneracka M, Kopcansky P, Antalk M, Timko M, Ramchand C N, Lobo D, Mehta R V and Upadhyay R V 1999 Immobilization of proteins and enzymes to fine magnetic particles J. Magn. Magn. Mater. 201 427–30
[24] Koneracka M, Kopcansky P, Timko M, Ramchand C N, de Sequeira A and Trevan M 2002 Direct binding procedure of proteins and enzymes to fine magnetic particles J. Mol. Catalysis B Enzymatic 18 13–8
[25] Widder K J, Morris R M, Poore G A, Howard D P and Senyei A E 1983 Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin—total remission in Yoshida sarcoma-bearing rats Eur. J. Cancer Clin. Oncol. 19 135–9
[26] Goodwin S, Peterson C, Hob C and Bittner C 1999 Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy J. Magn. Magn. Mater. 194 132–9
[27] Goodwin S C, Bittner C A, Peterson C L and Wong G 2001 Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier Toxicol. Sci. 60 177–83
[28] Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y and Murakami T 2000 Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters Int. J. Oncol. 17 309–16
[29] Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y and Murakami T 2000 Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters Int. J. Oncol. 17 309–16
[30] Lubbe A S, Bergemann C, Huhnt W, Fricke T, Riess H, Brock J W and Huhn D 1996 Preclinical experiences with magnetic drug targeting: tolerance and efficacy Cancer Res. 56 4694–701
[31] Lubbe A S, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Doerken B, Herrmann F and Guertler R 1996 Clinical experiences with magnetic drug targeting: a phase I study with 4-epidoxorubicin in 14 patients with advanced solid tumors Cancer Res. 56 4686–93
[32] Hafeli U O, Sweeney S M, Beresford B A and Humm J L 1995 Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results Nucl. Med. Biol. 22 147
[33] Hafeli U, Pauer G, Failing S and Tapolsky G 2001 Radiolabeling of magnetic particles with rhenium-188 for cancer therapy J. Magn. Magn. Mater. 225 73–8
[34] Mah C, Fraites T J, Zolotukhin I, Song S, Flotte T R, Dobson J, Batich C and Byrne B J 2002 Improved method of recombinant AAV2 delivery for systemic targeted gene therapy Mol. Therapy 6 106–12
[35] Gilchrist R K, Medal R, Shorey W D, Hanselman R C, Parrott J C and Taylor C B 1957 Selective inductive heating of lymph nodes Ann. Surg. 146 596–606
[36] Granov A M, Muratov O V and Frolov V F 2002 Problems in the local hyperthermia of inductively heated embolized tissues Theor. Foundations Chem. Eng. 36 63–6
[37] Reilly J P 1992 Principles of nerve and heart excitation by time-varying magnetic fields Ann. New York Acad. Sci. 649 96–117
[38] Rosensweig R E 2002 Heating magnetic fluid with alternating magnetic field J. Magn. Magn. Mater. 252 370–4
[39] Debye P 1929 Polar Molecules (New York: The Chemical Catalog Company)
[40] Jordan A, Wust P, Fahling H, Johns W, Hinz A and Felix R 1993 Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia Int. J. Hyperthermia 9 51–68
[41] Hergt R, Andra W, d’Ambly C, Hilger I, Kaiser W, Richter U and Schmidt H 1998 Physical limits of hyperthermia using magnetite fine particles IEEE Trans. Magn. 34 3745–54
[42] Weissleder R, Elizondo G, Wittenburg J, Rabito C A, Bengele H H and Josephson L 1990 Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging Radiol. 175 489–93
[43] Wacker F K, Reither K, Ebert W, Wendt M, Lewin J S and Wolf K J 2003 MR image-guided endovascular procedures with the ultrasmall superparamagnetic iron oxide SHU555C as an intravascular contrast agent: study in pigs Radiology 226 459–64
[44] Dosset V, Gomez C, Petry K G, Delalande C and Caille J-M 1999 Dose and scanning delay using USPIO for central nervous system macrophage imaging Magn. Res. Mater. Phys., Biol. Med. 8 185–9
[45] Michel S C A, Keller T M, Frohlich J M, Fink D, Caduff R, Seifert B, Marincek B and Kubik-Huch R A 2002 Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement Radiology 225 527–36
[46] Semelka R C and Helmberger T K G 2001 Contrast agents for MR imaging of the liver Radiology 218 27–38
[47] Enochs W S, Harsh G, Hochberg F and Weissleder R 1999 Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent J. Magn. Res. Imag. 9 228–32
[48] Stroh A, Faber C, Neuberger T, Lorenz P, Sieland K, Jakob PM, Webb A, Pilgrimm H, Schober R, Pohl EE, Zimmer C., Neuroimage. 2005 24, 635-45.
[49] Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca E A and Basilion J P 2000 In vivo magnetic resonance imaging of transgene expression Nature Med. 6 351–4
[50] Zhao M, Beauregard D, Loizou L, Davletov B and Brindle K 2001 Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent Nature Med. 7 1241–4
[51] N. H. Hai, N. D. Phu, N. H. Luong, N. Chau, H. D. Chinh, L. H. Hoang and D. L. Leslie-Pelecky, Mechanism for Sustainable Magnetic Nanoparticles under Ambient Conditions, J. Korean Phys. Soc., 52 (2008) 1327-1331.
[52] N. T. Khuat, V. A. T. Nguyen, T.-N. Phan, C. V. Thach, N. H. Hai and N. Chau, Extension of the Inhibitory Effect of Chloramphenicol on Bacteria by Incorporating It into Fe3O4 Magnetic Nanoparticles, J. Korean Phys. Soc., 52 (2008) 1323-1326.
[53] C. V. Thach, N. H. Hai and N. Chau, Size Controlled Magnetite Nanoparticles and Their Drug Loading Ability, J. Korean Phys. Soc., 52 (2008) 1332-1335.
[54] Ajay Kumar Gupta, Mona Gupta, Biomaterials 26 (2005) 3995–4021